首页> 外文OA文献 >Detection of structural inadequacy in process-based hydrological models : a particle-filtering approach.
【2h】

Detection of structural inadequacy in process-based hydrological models : a particle-filtering approach.

机译:在基于过程的水文模型中检测结构不足:一种粒子过滤方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, increasing computational power has been used to weight competing hydrological models in a Bayesian framework to improve predictive power. This may suggest that for a given measure of association with the observed data, one hydrological model is superior to another. However, careful analyses of the residuals of the model fit are required to propose further improvements to the model. In this paper we consider an alternative method of analyzing the shortcomings in a hydrological model. The hydrological model parameters are treated as varying in time. Simulation using a particle filter algorithm then reveals the parameter distribution needed at each time to reproduce the observed data. The resulting parameter, and the corresponding model state, distributions can be analyzed to propose improvements to the hydrological model. A demonstrative example is presented using rainfall-runoff data from the Leaf River, United States. This indicates that even when explicitly representing the uncertainty of the observed rainfall and discharge series, the technique shows shortcomings in the model structure.
机译:近年来,越来越多的计算能力已用于在贝叶斯框架中加权竞争水文模型,以提高预测能力。这可能表明,对于与观测数据的给定度量,一种水文模型优于另一种水文模型。但是,需要对模型拟合的残差进行仔细分析,以提出对模型的进一步改进。在本文中,我们考虑了一种分析水文模型缺点的替代方法。水文模型参数被视为随时间变化。然后,使用粒子滤波器算法进行的仿真揭示了每次重现观察到的数据所需的参数分布。可以分析得到的参数以及相应的模型状态分布,以提出对水文模型的改进。使用来自美国叶河的降雨径流数据给出了一个示范性例子。这表明,即使明确表示观测到的降雨和流量序列的不确定性,该技术也显示出模型结构的缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号